Зарегистрироваться Войти через вк

Найдите наименьшее значение функции $y=3+24x-2x^2-20\ln x$ на отрезке $[{1} / {7};{13} / {7}]$.…

Сложность:
Среднее время решения: 4 мин. 27 сек.

Найдите наименьшее значение функции $y=3+24x-2x^2-20\ln x$ на отрезке $[{1} / {7};{13} / {7}]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите точку максимума функции $y = √{102 + 16x - x^2}$.

Найдите точку минимума функции $y = -{x^2 + 10 000}/{x}$.

Найдите наименьшее значение функции $y = 5x^2 -12x+2 ln x+37$ на отрезке $[{3}/{5};{7}/{5}]$.

Найдите наибольшее значение функции $y = (7x^2 - 56x + 56)e^x$ на отрезке $[-3; 2]$.