Зарегистрироваться Войти через вк

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^{3} - 4t^{2} + t$,…

Сложность:
Среднее время решения: 2 мин. 30 сек.

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^{3} - 4t^{2} + t$, где $x$ - расстояние от точки отсчета в метрах, $t$ -  время в секундах, измеренное с начала движения. Найдите её скорость (в метрах в секунду) в момент времени $t = 12$ c.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Материальная точка движется прямолинейно по закону
$x(t)=t^2-t-12$, где $x$ — расстояние от точки отсчёта в метрах, $t$ — время в секундах, измеренное с начала движения. Найдите её скор…

Материальная точка движется прямолинейно по закону
$x(t)={1} / {3}t^3-{7} / {2}t^2-3t+5$, где $x$ — расстояние от точки отсчёта в метрах, $t$ — время в секундах, измеренное с начала дви…

На рисунке изображён график функции $y=f(x)$ и восемь точек на оси абсцисс: $x_1$, $x_2$, $x_3$, … ,$x_8$. В скольких из этих точек производная функции $f(x)$ отрицательна?

На рисунке изображён график функции $y=f'(x)$ производной функции $f(x)$, определённой на интервале $(-7;4)$. В какой точке отрезка $[-3;2]$ функция $f(x)$ принимает наибольшее значение?