Зарегистрироваться Войти через вк

Задание 7 из ЕГЭ по математике (профильной). Страница 3

За это задание вы можете получить 1 балл на ЕГЭ в 2021 году
Задача 41

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-6;6)$. Найдите количество точек, в которых касательная к графику функции $f(x)$ параллельна…

Задача 42

Прямая $y=3{,}2x-4$ параллельна касательной к графику функции $y=2x^2 + 3x -5$. Найдите абсциссу точки касания.

Задача 43

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-3;5)$. Найдите точку максимума функции $f(x)$.

Задача 44

На рисунке изображены график функции $y=f(x)$ и касательная к нему в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.

Задача 45

На рисунке изображён график функции $y=f(x)$ и касательная к нему в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.

Задача 46

При метании бумеранга его скорость изменялась по формуле
$v(t)=9t-t^{2}$ в метрах в секунду. Найдите расстояние, которое преодолел бумеранг, если он был в движении $9$ секунд. (Ответ …

Задача 47

Ребёнок на санках в первые $4$ с движения с горки проезжал расстояние, заданное формулой $S(t)={t^{3}} / {2}+2t$. Найдите его ускорение в момент времени $t=3$.

Задача 48

При проведении испытаний нового скоростного болида в первые $6$ с его движения скорость изменялась по формуле $v(t)=36t-3t^{2}$ в метрах в секунду. Какое расстояние прошёл болид за это…

Задача 49

Мотоциклист в первые $5$ с движения проезжал расстояние (в метрах), которое можно описать формулой $S(t)=t^{3}+3t$. Найдите его ускорение в момент времени $t=1$ (в м/с$^2$).

Задача 50

На рисунке представлены график движения тела и касательная к графику в момент времени $t=5$. Определите по графику скорость движения тела (в км/ч) в этот момент времени.

Задача 51

Точка движется по координатной прямой согласно закону
$x(t)=-2t^2+20t-7$, где $x(t)$ — координата точки в момент времени $t$. В какой точке координатной прямой произойдет мгновенная ост…

Задача 52

Точка движется по координатной прямой по закону
$x(t)=0,\!75t^2+t-7$, где $x(t)$ — координата точки в момент времени $t$.
В какой момент времени скорость точки будет равна $19$?

Задача 53

Точка движется по координатной прямой согласно закону
$x(t)=1,\!5t^2-3t+7$, где $x(t)$ — координата в момент времени $t$. В какой момент времени скорость точки будет равна $12$?

Задача 54

На рисунке изображён график функции $y=f(x)$ и касательная к этому графику, проведённая в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.

Задача 55

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-9;7)$. Найдите количество точек максимума функции $f(x)$ на отрезке $[-8;6]$.

Задача 56

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-6;7)$. В какой точке отрезка $[-4;5]$ функция $f(x)$ принимает наименьшее значение?

Задача 57

Прямая $y=-x+5$ параллельна касательной к графику функции $y=x^3+3x^2+2x+6$. Найдите абсциссу точки касания.

Задача 58

Прямая $y=3x+30$ параллельна касательной к графику функции $y=x^3+5x^2-5x-18$. Найдите наименьшую из возможных абсцисс точек касания.

Задача 59

Прямая $y=9x+5 $ является касательной к графику функции
$y=-x^2+bx-11 $. Найдите $b$, учитывая, что абсцисса точки касания больше $1$.

Задача 60

На рисунке изображён график производной функции $f(x)$, определённой на интервале $(-4;10)$. Найдите промежутки убывания функции $f(x)$. В ответе укажите сумму целых точек, входящих в эт…

1 2 3 4 5 ... 7