Зарегистрироваться Войти через вк

$AB$ — дуга окружности в $59°$, $AC$ и $BC$ — касательные к этой окружности. Найдите у…

Сложность:
Среднее время решения: 1 мин. 19 сек.

$AB$ — дуга окружности в $59°$, $AC$ и $BC$ — касательные к этой окружности. Найдите угол $ACB$. Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Через концы $A$ и $B$ дуги окружности с центром $O$ проведены касательные $AC$ и $BC$ (см. рис.). Меньшая дуга $AB$ равна $48^°$. Найдите угол $ACB$. Ответ дайте в градусах.

Основания равнобедренной трапеции равны 8 и 22. Косинус острого угла трапеции равен 0.4. Найдите боковую сторону.

Площадь параллелограмма равна 160, две его стороны равны 10 и 20. Найдите большую высоту этого параллелограмма.

В четырёхугольнике $ABCD$ стороны $AB, BC, CD$ и $AD$ стягивают дуги описанной окружности, градусные величины которых равны соответственно $75°, 84°, 51°, 150°$. Найдите угол $B$ этого четыр…