Зарегистрироваться Войти через вк

В трапеции $ABCD$ с основаниями $AB$ и $CD$ диагонали $AC$ и $BD$ равны $18$ и $16$ соответст…

Сложность:
Среднее время решения: 3 мин. 1 сек.

В трапеции $ABCD$ с основаниями $AB$ и $CD$ диагонали $AC$ и $BD$ равны $18$ и $16$ соответственно. На диагонали $AC$ как на диаметре построена окружность, пересекающая прямую $AB$ в точке $K$. Найдите длину $AK$, если известно, что $∠ CAB$ в два раза меньше $∠ ABD$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Угол при вершине, противолежащей основанию равнобедренного треугольника, равен $150°$. Найдите боковую сторону треугольника, если его площадь равна 324.

Найдите периметр прямоугольника, если его площадь равна $224$, а отношение соседних сторон равно ${2} / {7}$.

В треугольнике $ABC$ угол $C$ равен $90^°$, $BC=7$, $\cos A={3} / {5}$
(см. рис.). Найдите $AB$.

В треугольнике $ABC$ угол $C$ равен $90^°$, катет $AC=16$, $\sin A={3} / {5}$ (см. рис.). Найдите $AB$.