Зарегистрироваться Войти через вк

В трапеции $ABCD$ с основаниями $AB$ и $CD$ диагонали $AC$ и $BD$ равны $18$ и $16$ соответст…

Сложность:
Среднее время решения: 3 мин. 0 сек.

В трапеции $ABCD$ с основаниями $AB$ и $CD$ диагонали $AC$ и $BD$ равны $18$ и $16$ соответственно. На диагонали $AC$ как на диаметре построена окружность, пересекающая прямую $AB$ в точке $K$. Найдите длину $AK$, если известно, что $∠ CAB$ в два раза меньше $∠ ABD$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $ABC$ угол $C$ равен $90^°$, $BC=7$, $\cos A={3} / {5}$
(см. рис.). Найдите $AB$.

В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=12$, $\cos A={6} / {7}$ (см. рис.). Найдите $AB$.

Площадь прямоугольника равна $22$. Найдите его большую сторону, если она на $9$ длиннее меньшей стороны.

В треугольнике $ABC$ угол $C$ равен $90^°$, катет $AC=16$, $\sin A={3} / {5}$ (см. рис.). Найдите $AB$.