Зарегистрироваться Войти через вк

В треугольнике $ABC$ на стороне $AC$ взята точка $D$ так, что длина отрезка $AD$ равна …

Сложность:
Среднее время решения: 2 мин. 55 сек.

В треугольнике $ABC$ на стороне $AC$ взята точка $D$ так, что длина отрезка $AD$ равна 3, косинус угла $BDC$ равен ${13} / {20}$, а сумма углов $ABC$ и $ADB$ равна $π$. Найдите периметр треугольника $ABC$, если длина стороны $BC$ равна 2.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, sinA ={√{207}}/{16}$. Найдите высоту $CH$.

Найдите площадь прямоугольной трапеции, основания которой равны $9$ и $21$, большая боковая сторона составляет с основанием угол $45°$.

Найдите площадь прямоугольной трапеции, основания которой равны $16$ и $22$, большая боковая сторона составляет с основанием угол $45°$.

Два угла треугольника равны $48^°$ и $64^°$ (см. рис.). Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов. Ответ дайте в градусах.