Зарегистрироваться Войти через вк

В равнобедренном треугольнике точка касания вписанной окружности делит боковую …

Сложность:
Среднее время решения: 3 мин. 31 сек.

В равнобедренном треугольнике точка касания вписанной окружности делит боковую сторону в отношении $2:5$, считая от вершины основания. Радиус окружности, вписанной в этот треугольник, равен $2√ 5$. Найдите боковую сторону.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике ABC угол A равен $65°$, угол C равен $53°$. На продолжении стороны AB за точку B отложен отрезок BD, равный стороне BC. Найдите угол D треугольника BCD. Ответ дайте в гр…

Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?

В треугольнике $ABC$ $AC=BC$, $AB=15$
и $\tg ∠ BAC={2√ {5}} / {5}$ (см. рис.). Найдите высоту $AH$.

Площадь параллелограмма равна 160, две его стороны равны 10 и 20. Найдите большую высоту этого параллелограмма.