Зарегистрироваться Войти через вк

В равнобедренном треугольнике точка касания вписанной окружности делит боковую …

Сложность:
Среднее время решения: 3 мин. 30 сек.

В равнобедренном треугольнике точка касания вписанной окружности делит боковую сторону в отношении $2:5$, считая от вершины основания. Радиус окружности, вписанной в этот треугольник, равен $2√ 5$. Найдите боковую сторону.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Площадь параллелограммаABCD равна 324.Точка P - середина стороны BC. Найдите площадь трапеции APCD.

Площадь параллелограмма равна 160, две его стороны равны 10 и 20. Найдите большую высоту этого параллелограмма.

Через концы $A$ и $B$ дуги окружности с центром $O$ проведены касательные $AC$ и $BC$ (см. рис.). Меньшая дуга $AB$ равна $48^°$. Найдите угол $ACB$. Ответ дайте в градусах.

Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?