Зарегистрироваться Войти через вк

В трапеции $ABCD$ отношение длин оснований $AD$ и $BC$ равно $2$. Диагонали трапеции пе…

Сложность:
Среднее время решения: 3 мин. 2 сек.

В трапеции $ABCD$ отношение длин оснований $AD$ и $BC$ равно $2$. Диагонали трапеции пересекаются в точке $O$, площадь треугольника $BOC$ равна $3$. Найдите площадь четырёхугольника $BOCP$, где $P$ — точка пересечения продолжений боковых сторон трапеции.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В параллелограмме $ABCD$ $AB = 6, AD = 9, sinA = {2}/{3}$. Найдите большую высоту параллелограмма.

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, tgA = 0.4$. Найдите $AC$.

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, sinA ={√{207}}/{16}$. Найдите высоту $CH$.

Площадь прямоугольника равна $22$. Найдите его большую сторону, если она на $9$ длиннее меньшей стороны.