Зарегистрироваться Войти через вк

В параллелограмме $ABCD$ $AB=20$, $\cos A={4} / {5}$. Высота, опущенная из вершины $D$,…

Сложность:
Среднее время решения: 3 мин. 2 сек.

В параллелограмме $ABCD$ $AB=20$, $\cos A={4} / {5}$. Высота, опущенная из вершины $D$, пересекает сторону $BC$ в точке $H$. Найдите площадь треугольника $CDH$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите площадь ромба, если его диагонали равны $3√ {7}$ и $12√ {7}$.

Угол при вершине, противолежащей основанию равнобедренного треугольника, равен $30^°$. Боковая сторона треугольника равна $7$. Найдите площадь этого треугольника.

В треугольнике $ABC$ угол $C$ равен $90^°$, $BC=7$, $\cos A={3} / {5}$
(см. рис.). Найдите $AB$.

Найдите вписанный угол, опирающийся на дугу, длина которой равна ${5}/{18}$ длины окружности. Ответ дайте в градусах.