Зарегистрироваться Войти через вк

В трапеции $ABCD$ отношение длин оснований $AD$ и $BC$ равно $3$. Диагонали трапеции пе…

Сложность:
Среднее время решения: 3 мин. 14 сек.

В трапеции $ABCD$ отношение длин оснований $AD$ и $BC$ равно $3$. Диагонали трапеции пересекаются в точке $O$, площадь треугольника $AOB$ равна $6$. Найдите площадь трапеции.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Угол при вершине, противолежащей основанию равнобедренного треугольника, равен $150^°$. Боковая сторона треугольника равна $12$. Найдите площадь этого треугольника.

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, sinA ={√{207}}/{16}$. Найдите высоту $CH$.

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, tgA = 0.4$. Найдите $AC$.

Найдите угол $ACO$, если его сторона $AC$ касается окружности, $O$ — центр окружности, сторона $CO$ пересекает окружность в точках $B$ и $D$ (см. рис.), а дуга $AD$ окружности, заключенная внутр…