Зарегистрироваться Войти через вк

В треугольнике $ABC$ $AB=BC=98$, $AH$ — высота, $\cos BAC={3} / {7}$. Найдите $CH$.

Сложность:
Среднее время решения: 4 мин. 33 сек.

В треугольнике $ABC$ $AB=BC=98$, $AH$ — высота, $\cos BAC={3} / {7}$. Найдите $CH$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=12$, $\cos A={6} / {7}$ (см. рис.). Найдите $AB$.

Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?

Площадь параллелограмма равна 160, две его стороны равны 10 и 20. Найдите большую высоту этого параллелограмма.

Найдите площадь прямоугольной трапеции, основания которой равны $16$ и $22$, большая боковая сторона составляет с основанием угол $45°$.