Зарегистрироваться Войти через вк

На доске написаны числа $4$ и $6$. За один ход выписанные числа $a$ и $b$ заменяются чи…

На доске написаны числа $4$ и $6$. За один ход выписанные числа $a$ и $b$ заменяются числами ($2a+2$) и ($a+b+1$). Например, за один ход из чисел $4$ и $6$ можно получить $10$ и $11$ либо $14$ и $11$. а) Можно ли через несколько ходов получить число $54$? б) Может ли разность чисел, выписанных на доске после $2018$ хода, равняться $1$? в) Определите наименьшее возможное значение разности чисел, выписанных на доске после $2018$ хода.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

$10$ человек стоят по кругу, все они разного возраста. Каждый сказал: «Я старше обоих своих соседей». а) Могло ли оказаться так, что все сказали правду? б) Могло ли оказаться так, чт…

Можно ли в бесконечно убывающей последовательности $1; {1}/ {2} ; {1}/{3} ; {1}/{4} ; {1}/ {5} ; . . .$ выбрать:

а) пять чисел;

б) пятьдесят чисел;

в) бесконечное множество чисел, ко…

Две девочки делают фотографии во время туристической поездки. В первый день Катя сделала $k$ фотографий, а Маша — $m$ ($k⩾1$, $m⩾1$). Каждый последующий день каждая из девочек делает на $1$ …

Дана последовательность натуральных чисел, в которой каждое число, кроме первого и последнего, меньше среднего арифметического соседних с ним чисел.

а) Приведите пример последовате…