Зарегистрироваться Войти через вк

При проведении школьной математической олимпиады итоговая сумма баллов составля…

При проведении школьной математической олимпиады итоговая сумма баллов составляется из двух баллов за участие, $13$ баллов за каждую взятую и решённую задачу и $(-8)$ баллов за каждую взятую и нерешённую задачу. Каждую задачу участник выбирает себе самостоятельно в запечатанном конверте. Число задач, предлагаемых для решения, не ограничено. а) У одного из участников, решившего $p$ задач и не решившего $q$ задач, итоговая сумма оказалась равной $u$ баллов. Найдите итоговую сумму участника, решившего $2p$ задач и не решившего $2q$ задач. б) Какое минимальное число задач надо взять, чтобы итоговая сумма оказалась равной нулю? в) Докажите, что если итоговая сумма у двух участников оказалась одинаковой, то разность между числом всех задач, взятых для решения одним участником, и числом задач, взятых для решения другим участником, делится на $21$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Можно ли в бесконечно убывающей последовательности $1; {1} /{2} ; {1}/ {3} ; {1} /{4} ; {1}/ {5} ;. . .$ выбрать:

а) четыре числа;

б) сто чисел;

в) бесконечное множество чисел, котор…

На доске выписаны числа $7$ и $8$. За один ход надо заменить написанные на доске числа $a$ и $b$ числами $(2a+3)$ и $(2+a+b)$. Например, из чисел $7$ и $8$ можно получить либо числа $(17;17)$, либо …

Множество чисел назовём особенным, если его можно разбить на два подмножества с одинаковой суммой чисел. а) Является ли множество $\{750; 751; … , 949\}$ особенным? б) Является ли мн…

Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 4725 и а) три; б) четыре; в) пять из них образуют геометрическую прогрессию?