Зарегистрироваться Войти через вк

При каких значениях параметра $a$ система $\{\table\y≥-{|x-2sinπα|}; \(x-sin2πα)^2+(y-4a)^2={2a^4}/{25};$ …

При каких значениях параметра $a$ система $\{\table\y≥-{|x-2sinπα|}; \(x-sin2πα)^2+(y-4a)^2={2a^4}/{25};$ имеет ровно два решения?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каком значении $a$ множеством решений неравенства
${1+2^{-x}} / {1+2^x}>{4} / {√ {x^2+2ax+a^2}}$ является множество всех отрицательных чисел?

При каком значении $a$ множеством решений неравенства
${1+3^x} / {1+3^{-x}}>{3} / {|x+a|}$ является множество всех положительных чисел?

Найдите все значения a, при каждом из которых система неравенств $\{\table\(a - x^2)(a + x - 2) < 0; \x^2 ≤ 1;$ не имеет решений.

Найдите все значения параметра $a$, при каждом из которых система уравнений $\{{\table {y=a-x{,}}; {|x-2|(y+5x-10)=(x-2)^3};}$ имеет ровно четыре различных решения.