Зарегистрироваться Войти через вк

Найдите все значения параметра a, при каждом из которых решение неравенства ${(x - a)(a - 3√x)}/ {√{12 - x - 2a}} ≥ 0$ …

Найдите все значения параметра a, при каждом из которых решение неравенства ${(x - a)(a - 3√x)}/ {√{12 - x - 2a}} ≥ 0$ содержит отрезок длиной не менее $2$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите все значения $a$, при каждом из которых уравнение $√{3^{2x} - 5a} = 3^{x} - a$ имеет единственный корень.

При каких значениях $a$ система уравнений имеет ровно два решения?

$\{\table\ {||x|-5|+{|y-4|}}=3; {|x+2|}+{|y+1|}=a;$

При каких значениях a система уравнений имеет ровно четыре решения?

$\{\table{{|{|x|}-3|}+{|y-5|}}=4; {{|x-2|}+{|y-1|}}=a;$

Найдите все значения параметра $a$, при которых уравнение $√{9^x - 4a} = 3^x - a$ имеет единственный корень.