Зарегистрироваться Войти через вк

Найдите все значения параметра a, при каждом из которых решение неравенства ${(x - a)(a - 3√x)}/ {√{12 - x - 2a}} ≥ 0$ …

Найдите все значения параметра a, при каждом из которых решение неравенства ${(x - a)(a - 3√x)}/ {√{12 - x - 2a}} ≥ 0$ содержит отрезок длиной не менее $2$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите все значения $a$, при каждом из которых уравнение ${x^3 + x^2 - 16a^2x - 5x + a}/{x^3 - 16a^2x}= 1$ имеет единственный корень.

При каких значениях $a$ система уравнений имеет ровно два решения?

$\{\table\ {||x|-5|+{|y-4|}}=3; {|x+2|}+{|y+1|}=a;$

При каких значениях параметра $a$ уравнение $√{√{x - a} - a} = x$ имеет единственное решение?

При каких значениях a система уравнений имеет ровно четыре решения?

$\{\table{{|{|x|}-3|}+{|y-5|}}=4; {{|x-2|}+{|y-1|}}=a;$