Зарегистрироваться Войти через вк

Две окружности различных радиусов касаются друг друга внешним образом. Их общие…

Две окружности различных радиусов касаются друг друга внешним образом. Их общие касательные, не проходящие через точку касания окружностей, пересекаются в точке O. При этом одна из касательных касается окружностей в точках A и C, считая от точки O, а другая - соответственно в точках B и D.

а) Докажите, что прямая AB перпендикулярна биссектрисе угла, образованного указанными касательными.

б) Найдите расстояние от середины отрезка AB до точки C, если радиусы окружностей равны 2 и 6.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Биссектриса острого угла параллелограмма пересекает его сторону в точке K. Окружность радиусом 3 проходит через точку пересечения диагоналей и касается трёх сторон параллелограмма,…

Основания трапеции равны $7$ и $34$, а её диагонали равны $9$ и $40$.

а) Докажите, что диагонали трапеции перпендикулярны.
б) Найдите площадь трапеции.

В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …

В треугольнике $ABC$ проведена высота $AH$ и медиана $AM$. $AB=2$, $AC=√ {21}$, $AM=2{,}5$.

а) Докажите, что треугольник $ABC$ прямоугольный.

б) Вычислите $HM$.