Две окружности различных радиусов касаются друг друга внешним образом. Их общие…
Две окружности различных радиусов касаются друг друга внешним образом. Их общие касательные, не проходящие через точку касания окружностей, пересекаются в точке O. При этом одна из касательных касается окружностей в точках A и C, считая от точки O, а другая - соответственно в точках B и D.
а) Докажите, что прямая AB перпендикулярна биссектрисе угла, образованного указанными касательными.
б) Найдите расстояние от середины отрезка AB до точки C, если радиусы окружностей равны 2 и 6.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Биссектриса острого угла параллелограмма пересекает его сторону в точке K. Окружность радиусом 3 проходит через точку пересечения диагоналей и касается трёх сторон параллелограмма,…
Основания трапеции равны $7$ и $34$, а её диагонали равны $9$ и $40$.
а) Докажите, что диагонали трапеции перпендикулярны.
б) Найдите площадь трапеции.
В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …