Зарегистрироваться Войти через вк

В трапеции ABCD точка M - середина основания AD, точка N выбрана на стороне AB …

В трапеции ABCD точка M - середина основания AD, точка N выбрана на стороне AB так, что площадь четырёхугольника ANLM равна площади треугольника CLD, где L - точка пересечения отрезков CM и DN.

а) Докажите, что N - середина стороны AB.

б) Найдите, какую часть от площади трапеции ABCD составляет площадь четырёхугольника ANLM, если BC = 5, AD = 8.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В прямоугольнике ABCD AB = 16, AD = 22. К окружности, радиус которой равен 8, с центром в точке A из точки C проведена касательная, которая пересекает сторону AD в точке M.

а) Дока…

В треугольнике $ABC$ проведена высота $AH$ и медиана $AM$. $AB=2$, $AC=√ {21}$, $AM=2{,}5$.

а) Докажите, что треугольник $ABC$ прямоугольный.

б) Вычислите $HM$.

В окружность вписана трапеция $ABCD$ с основаниями $AD$ и $BC$, один из углов которой равен $60°$. В трапецию вписана ещё одна окружность.

а) Докажите, что центр описанной окружности трапе…

Две окружности касаются внутренним образом в точке $K$, причём меньшая окружность проходит через центр $O$ большей. Диаметр $AB$ большей окружности вторично пересекает меньшую окружность…