Зарегистрироваться Войти через вк

В трапеции $ABCD$, в которой $AD ‖BC$, точка $O$ - точка пересечения диагоналей трапе…

В трапеции $ABCD$, в которой $AD ‖BC$, точка $O$ - точка пересечения диагоналей трапеции. Через эту точку проведена прямая, параллельная основаниям и пересекающая боковые стороны в точках $M$ и $N$.

а) Докажите, что $MO = ON$.

б) Найдите отношение ${BC}/{AD}$, если ${BD}/{OB}= {5}/{2}$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Две окружности касаются внутренним образом в точке $A$, причём меньшая окружность проходит через центр $O$ большей. Диаметр $BC$ большей окружности вторично пересекает меньшую окружность…

В треугольнике $ABC$ проведены высоты $AM$ и $BN$. На них из точек $M$ и $N$ опущены перпендикуляры $MK$ и $NF$ соответственно.

а) Докажите, что прямые $KF$ и $AB$ параллельны.

б) Найдите отношени…

Окружность с центром $O_1$ радиусом $9$ вписана в треугольник $ABC$. Окружности с центрами $O_2$ и $O_3$ и радиусами ${81} / {25}$ и $1$, которые вписаны в углы треугольника $A$ и $C$ соответственно…

В треугольнике $ABC$ проведена высота $AH$ и медиана $AM$. $AB=2$, $AC=√ {21}$, $AM=2{,}5$.

а) Докажите, что треугольник $ABC$ прямоугольный.

б) Вычислите $HM$.