Зарегистрироваться Войти через вк

Задан треугольник $ABC$, каждая сторона которого равна $2$. За пределами треугольни…

Задан треугольник $ABC$, каждая сторона которого равна $2$. За пределами треугольника дана точка $D$ так, что $∠ADC = 120°$. Прямая $l$ проходит через точку $A$ и перпендикулярна отрезку, проведённому в $A$ из точки пересечения высот $△ABC$. $K$ - точка пересечения прямых $l$ и $BD$. Длина отрезка $AK$ равна $1$.

а) Докажите, что $BK·DK = 1$.

б) Найдите длину отрезка $AD$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В трапеции ABCD точка M - середина основания AD, точка N выбрана на стороне AB так, что площадь четырёхугольника ANLM равна площади треугольника CLD, где L - точка пересечения отре…

В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …

Один из двух отрезков, соединяющих середины противоположных сторон выпуклого четырёхугольника, делит его площадь пополам, а другой — в отношении ${6} / {7}$. а) Докажите, что данный …

К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно.

а) Докажите, что периметр треугольника AMN равен стороне …