Зарегистрироваться Войти через вк

Задан треугольник $△ABC$, каждая сторона которого равна $5$. За пределами треугольн…

Задан треугольник $△ABC$, каждая сторона которого равна $5$. За пределами треугольника дана точка $D$ так, что $∠ADC = 120°$.

а) Докажите, что $AD + CD = BD$.

б) Прямая $l$ касается описанной окружности треугольника $ABC$ в точке $A$. $K$ - точка пересечения прямых $l$ и $BD$. Длина отрезка $AK$ равна $2$. Найдите $AD·DC$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …

В прямоугольном треугольнике $ABC$ точки $P$ и $K$ — середины катета $BC$ и гипотенузы $AB$ соответственно. Биссектриса угла $BAC$ пересекает прямую $KP$ в точке $R$.

а) Докажите, что точки $A$,…

Один из двух отрезков, соединяющих середины противоположных сторон выпуклого четырёхугольника, делит его площадь пополам, а другой — в отношении ${6} / {7}$. а) Докажите, что данный …

В трапеции $ABCD$, в которой $AD ‖ BC$, точка $M$ точка пересечения боковых сторон $AB$ и $CD$. Прямая $MN$ пересекает основания $AD$ и $BC$ в точках $P$ и $Q$ соответственно, точка $N$ точка пересечени…