Зарегистрироваться Войти через вк

Две окружности касаются внешним образом в точке $T$. Прямая $KN$ касается первой ок…

Две окружности касаются внешним образом в точке $T$. Прямая $KN$ касается первой окружности в точке $K$, а второй - в точке $N$. Известно, что $TS$ - диаметр окружности, описанной около $△KNT$.

а) Докажите, что прямые $SN$ и $KS$ перпендикулярны.

б) Найдите площадь четырёхугольника $KTNS$, если радиусы окружностей равны 1 и 3.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $ABC$ проведена высота $AH$ и медиана $AM$. $AB=2$, $AC=√ {21}$, $AM=2{,}5$.

а) Докажите, что треугольник $ABC$ прямоугольный.

б) Вычислите $HM$.

Биссектриса острого угла A равнобедренной трапеции ABCD пересекает её основание в точке K. В этой трапеции расположены две равные окружности радиусом 2, касающиеся её сторон и друг…

Две окружности касаются внутренним образом в точке $A$, причём меньшая окружность проходит через центр $O$ большей. Диаметр $BC$ большей окружности вторично пересекает меньшую окружность…

В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …