Зарегистрироваться Войти через вк

Решите неравенство $log_{{√2+√3}/{3}}5≥log_{{√2+√3}/{3}}(7-2^x)$.

Решите неравенство $log_{{√2+√3}/{3}}5≥log_{{√2+√3}/{3}}(7-2^x)$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Решите неравенство: $\log_7^2(9-x^2)-10\log_7(9-x^2)+21⩾ 0$.

Решите неравенство ${2x^2-7x+3}/{log_{3x+2}(x^2-5x+7)}≤0$.

Решите неравенство $6^x√{15-x^2-2x}≥36√{15-x^2-2x}$.

Решите неравенство $2 log_{x}3 + 3log_{3x}3 ≤ 2$.