Зарегистрироваться Войти через вк

Решите уравнение: $\log_{5}(15+√ {x-5})+\log_{√ {x-5}+15}25(√ {x-5}+15)=4$.

Сложность:
Среднее время решения: 3 мин. 51 сек.

Решите уравнение: $\log_{5}(15+√ {x-5})+\log_{√ {x-5}+15}25(√ {x-5}+15)=4$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение $log^2_x√2 = 2 - {ln√2}/{ln x}$.

б) Найдите все корни этого уравнения, принадлежащие промежутку $(0.8; 1]$.

а) Решите уравнение $2log_2^2(2 sin x) - 3 log_2(2 sin x) + 1 = 0$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $[{3π}/{2}; 3π]$.

а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.

а) Решите уравнение $11\cos 2x=7\sin (x-{π} / {2})-9$.

б) Укажите корни этого уравнения, принадлежащие отрезку $[-π;0]$.