Зарегистрироваться Войти через вк

Найдите наибольшее значение функции $y=\ln x-x$ на интервале $(0; 3)$.

Найдите наибольшее значение функции $y=\ln x-x$ на интервале $(0; 3)$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите наибольшее значение функции $y=\ln(x+7)^3-3x$ на отрезке $[-6{,}5 ;-4]$.

Найдите точку максимума функции $y = (4x - 5) cos x - 4 sin x + 12$, принадлежащую промежутку $(0;{π}/{2})$.

Найдите точку минимума функции $y = -{x^2 + 10 000}/{x}$.

Найдите наибольшее значение функции $y=√ {-2\log_{0{,}5} (5x+1)}$ на отрезке $[12{,}6;51]$.