Зарегистрироваться Войти через вк

Найдите наименьшее значение функции $y=6x-\log_2(x+6)^2$ на отрезке $[-5{,}5;0]$.

Сложность:
Среднее время решения: 3 мин. 43 сек.

Найдите наименьшее значение функции $y=6x-\log_2(x+6)^2$ на отрезке $[-5{,}5;0]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите точку максимума функции $y = √{102 + 16x - x^2}$.

Найдите точку максимума функции $y=-{9x^2+9} / {x}$.

Найдите точку минимума функции $y = -{x^2 + 10 000}/{x}$.

Найдите наибольшее значение функции $y = (7x^2 - 56x + 56)e^x$ на отрезке $[-3; 2]$.