Зарегистрироваться Войти через вк

Найдите наибольшее значение функции $y = 4x^2 - 19x + 11 ln x + 715$ на отрезке $[{3}/{4};{5}/{4}]$.…

Сложность:
Среднее время решения: 3 мин. 9 сек.

Найдите наибольшее значение функции $y = 4x^2 - 19x + 11 ln x + 715$ на отрезке $[{3}/{4};{5}/{4}]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите точку максимума функции $y = (x + 3)^{2}e^{x-2016}$.

Найдите наименьшее значение функции $y = 5x^2 -12x+2 ln x+37$ на отрезке $[{3}/{5};{7}/{5}]$.

Найдите точку максимума функции $y=√ {77+4x-x^2}$.

Найдите точку минимума функции $y = -{x^2 + 10 000}/{x}$.