Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

На доске выписаны числа $10$ и $11$. За один ход надо заменить написанные на доске …

На доске выписаны числа $10$ и $11$. За один ход надо заменить написанные на доске числа $a$ и $b$ числами ($2a+1$) и ($a+b$). Например, из чисел $10$ и $11$ можно получить либо $21$ и $21$, либо числа $21$ и $23$. а) Может ли после нескольких ходов на доске появиться число $95$? б) Может ли после $1003$ ходов на доске появиться число $20018$? в) Укажите наибольшую разность чисел через $2018$ ходов.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В комнате $n$ человек $(n>3)$. Каждый сказал: «В этой комнате тех, кто выше меня, меньше, чем тех, кто ниже меня». а) Пусть все они разного роста и $n=15$. Сколько человек сказали правду…

На доске выписаны числа $7$ и $9$. За один ход выписанные числа $a$ и $b$ нужно заменить числами $(a+b-1)$ и $(2b+4)$. Например, из чисел $7$ и $9$ можно получить либо числа $15$ и $18$, либо числа $15$ …

Два мастера на протяжении некоторого числа дней изготавливали одинаковые детали. Сергей Петрович в первый день изготовил $s$ деталей, а Пётр Сергеевич — $p$ деталей, $s$ и $p$ — натуральны…

Две девочки делают фотографии во время туристической поездки. В первый день Катя сделала $k$ фотографий, а Маша — $m$ ($k⩾1$, $m⩾1$). Каждый последующий день каждая из девочек делает на $1$ …