Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Учитель задумал несколько различных целых чисел и выписал набор этих чисел и вс…

Учитель задумал несколько различных целых чисел и выписал набор этих чисел и все их возможные суммы (по 2, по 3 и т.д. слагаемых) на доске в порядке неубывания. Например, если бы он задумал числа 1,-5, 6, то на доске был бы выписан набор -5, -4, 1, 1, 2, 6, 7.

а) На доске был выписан набор -9, -7, -5, -3, -2, 2, 4. Какие числа задумал учитель?

б) Для некоторых четырёх задуманных ненулевых чисел на доске выписан набор. Всегда ли по этому набору можно определить задуманные числа?

в) Дополнительно известно, что учитель задумал 3 числа. Все они не равны 0. Какое наибольшее число единиц может быть выписано на доску?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:

а) x + S(x) = 2017;

б) x + S(x) + S(S(x)) = 2017;

в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.

Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:

а) $x + S(x) = 2015$;

б) $x + S(x) + S(S(x)) = 2015$;

в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.

На окружности в случайном порядке были расположены натуральные числа от $1$ до $13$. Над каждой парой соседних чисел написали модуль их разности, после чего исходные числа стёрли. а) М…

Маша задумала $6$ различных натуральных чисел и проделывает с ними такую операцию: сначала находит среднее арифметическое первых двух чисел, затем — среднее арифметическое полученног…