Зарегистрироваться Войти через вк

а) Дана непостоянная арифметическая прогрессия с натуральными членами $a_n$. Посл…

а) Дана непостоянная арифметическая прогрессия с натуральными членами $a_n$. Последовательность $c_n$ сформирована по правилу $c_n = a_n^2 + a_{n+2}^2$. Сколько простых членов подряд может быть у последовательности $c_n$?

б) Дана геометрическая прогрессия $b_n$ с натуральными членами и простым знаменателем, $S_k = b_1+b_2+...+b_k$. Какое наибольшее количество подряд идущих членов последовательности $S_k$ могут быть простыми числами?

в) Дана геометрическая прогрессия $b_n$ с натуральными членами и простым знаменателем, $c_n = b_1n+b_{n+1}+b_{n+2}$. Какое наибольшее количество подряд идущих членов последовательности $c_n$ могут быть простыми числами?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Коля берёт пять различных натуральных чисел и проделывает с ними следующие операции: сначала находит среднее геометрическое первых двух чисел, затем — среднее геометрическое третье…

Для проведения тестирования было подготовлено $4n + 3 (n ∈ N)$ вопросов. Результаты тестирования заносятся на отдельную карточку в одну строку, состоящую из $4n + 3$ клеток. В случае в…

Существуют ли такие восемьсот различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя

а) ровно в 500 раз;

б) ровно в 400 раз?

в) Найдите на…

На доске написано $30$ различных натуральных чисел, каждое из которых или оканчивается на $7$, или чётное. Сумма всех чисел равна $840$. а) Может ли на доске быть выписано ровно $28$ чётны…