Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

При каком значении $a$ множеством решений неравенства ${1+3^x} / {1+3^{-x}}> {3} / {|x+a|}$ …

Сложность:
Среднее время решения: 2 мин. 1 сек.

При каком значении $a$ множеством решений неравенства
${1+3^x} / {1+3^{-x}}>{3} / {|x+a|}$ является множество всех положительных чисел?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите все значения $a$, при которых система уравнений

$\{\table\y=√{-5-6x-x^2}; \y-ax=2-3a;$

имеет ровно два решения.

Найдите все значения параметра $а$, при каждом из которых уравнение $x^3 + 3x^2 - x log_3(a + 1) + 5 = 0$ имеет единственное решение на отрезке $[0; 2]$.

При каких значениях параметра $a$ система $\{\table\x-√3{|y|}=0; \(x-2a)^2+(y-cosπa)^2≤(5a-21)^2;$ имеет ровно два решения?

Найдите все значения $a$, при каждом из которых уравнение $√{3^{2x} - 5a} = 3^{x} - a$ имеет единственный корень.