Зарегистрироваться Войти через вк

Найдите наибольшее значение функции $y=√ {-96+28x-x^2}.$

Найдите наибольшее значение функции $y=√ {-96+28x-x^2}.$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите точку минимума функции $y = -{x^2 + 10 000}/{x}$.

Найдите наибольшее значение функции $y = (x + 4)^2(x + 1) + 19$ на отрезке $[-5; -3]$.

Найдите точку минимума функции $y = (0.7- x) cos x + sin x + 2$, принадлежащую промежутку $(0;{π}/{2})$.

Найдите точку минимума функции $y=(12-5x)\sin x-5\cos x-10$, принадлежащую интервалу $({π} / {2};π)$.