Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Найдите наименьшее значение функции $y=2e^{2x}-10e^x+8$ на отрезке $[0;1]$.

Сложность:
Среднее время решения: 3 мин. 55 сек.

Найдите наименьшее значение функции $y=2e^{2x}-10e^x+8$ на отрезке $[0;1]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите точку минимума функции $y = (0.7- x) cos x + sin x + 2$, принадлежащую промежутку $(0;{π}/{2})$.

Найдите точку максимума функции $y = (x + 7)^2(x - 6) + 11$.

Найдите точку минимума функции $y = -{x^2 + 10 000}/{x}$.

Найдите наибольшее значение функции $y=\ln(4-2x)+2x-7$ на отрезке $[0;1{,}7]$.