Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения

Вычислите площадь фигуры, ограниченной линиями: $y=24x-9x^2$, $x={1} / {2}$, $x=2$, $y=0$.…

Сложность:
Среднее время решения: 2 мин. 53 сек.

Вычислите площадь фигуры, ограниченной линиями: $y=24x-9x^2$, $x={1} / {2}$, $x=2$, $y=0$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На рисунке изображён график функции $y = f(x)$, определённой на промежутке $(-5; 7)$. Найдите количество точек, в которых производная функции $f(x)$ равна нулю на отрезке $[-2; 4]$.

На рисунке изображён график функции $y = f(x)$, определённой на интервале $(-2; 8)$. Определите количество точек, в которых производная функции $f(x)$ равна $0$.

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$. На оси абсцисс отмечено десять точек: $x_1$, $x_2$, $x_3$, … , $x_8$, $x_9$, $x_{10}$. Сколько из этих точек лежит на промежутка…

На рисунке изображён график функции $y=f'(x)$ производной функции $f(x)$, определённой на интервале $(-7;4)$. В какой точке отрезка $[-3;2]$ функция $f(x)$ принимает наибольшее значение?