Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения
Русский язык
Математика
Обществознание
Физика
История
Биология
Химия
Английский язык
Информатика
География
ОГЭ

Вычислите площадь фигуры, ограниченной линиями: $y=-3x^2-3x$, $y+9x+9=0$.

Сложность:
Среднее время решения: 3 мин. 26 сек.

Вычислите площадь фигуры, ограниченной линиями: $y=-3x^2-3x$, $y+9x+9=0$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На рисунке изображён график функции $y=f'(x)$ производной функции $f(x)$, определённой на интервале $(-7;4)$. В какой точке отрезка $[-3;2]$ функция $f(x)$ принимает наибольшее значение?

На рисунке изображён график функции $y = f(x)$ и отмечены точки $-6, -1, 1, 4$ на оси абсцисс. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

Прямая $y = -3x + 4$ параллельна касательной к графику функции $y = -x^2 + 5x - 7$. Найдите абсциссу точки касания.

На рисунке изображён график функции $y = f(x)$, определённой на интервале $(-2; 8)$. Определите количество точек, в которых производная функции $f(x)$ равна $0$.