Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения
Русский язык
Математика
Обществознание
Физика
История
Биология
Химия
Английский язык
Информатика
География
ОГЭ

Прямая $y = 4x - 6$ параллельна касательной к графику функции $y = x^2 - 4x + 9$. Н…

Сложность:
Среднее время решения: 36 сек.

Прямая $y = 4x - 6$ параллельна касательной к графику функции $y = x^2 - 4x + 9$. Найдите абсциссу точки касания.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На рисунке изображён график функции $y=f'(x)$ производной функции $f(x)$, определённой на интервале $(-7;4)$. В какой точке отрезка $[-3;2]$ функция $f(x)$ принимает наибольшее значение?

На рисунке изображён график функции $y = f(x)$, определённой на интервале $(-2; 8)$. Определите количество точек, в которых производная функции $f(x)$ равна $0$.

На рисунке изображён график функции $y=g(x)$, определённой и дифференцируемой на интервале $(-8; 6)$. Найдите количество точек, в которых касательная к графику этой функции параллельна…

На рисунке изображён график функции $y = f(x)$ и отмечены точки $-5,-4,-1, 1$ на оси абсцисс. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.