Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения

Прямая $y=-x+5$ параллельна касательной к графику функции $y=x^3+3x^2+2x+6$. Найдит…

Сложность:
Среднее время решения: 2 мин. 31 сек.

Прямая $y=-x+5$ параллельна касательной к графику функции $y=x^3+3x^2+2x+6$. Найдите абсциссу точки касания.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На рисунке изображён график функции $y = f(x)$, определённой на интервале $(-2; 8)$. Определите количество точек, в которых производная функции $f(x)$ равна $0$.

Прямая $y = 3x - 7$ является касательной к графику функции $y = x^3 + 3x^2 - 6x - 2$. Найдите абсциссу точки касания.

На рисунке изображён график функции $y=f'(x)$ производной функции $f(x)$, определённой на интервале $(-7;4)$. В какой точке отрезка $[-3;2]$ функция $f(x)$ принимает наибольшее значение?

На рисунке изображён график функции $y = f(x)$ и касательная к нему в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.