Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Прямая $y=-x+5$ параллельна касательной к графику функции $y=x^3+3x^2+2x+6$. Найдит…

Сложность:
Среднее время решения: 2 мин. 25 сек.

Прямая $y=-x+5$ параллельна касательной к графику функции $y=x^3+3x^2+2x+6$. Найдите абсциссу точки касания.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На рисунке изображён график функции $y = f(x)$ и отмечены точки $-5,-4,-1, 1$ на оси абсцисс. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.

На рисунке изображён график функции $y=f'(x)$ производной функции $f(x)$, определённой на интервале $(-7;4)$. В какой точке отрезка $[-3;2]$ функция $f(x)$ принимает наибольшее значение?

Прямая $y=4x+4$ параллельна касательной к графику функции $y=2x^2-5x+10$. Найдите абсциссу точки касания.

На рисунке изображён график функции $y = f(x)$, определённой на интервале $(-2; 8)$. Определите количество точек, в которых производная функции $f(x)$ равна $0$.