Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения

В треугольнике $ABC$ угол $A$ равен $26°$, угол $B$ равен $82°$, $CD$ - биссектриса внешнег…

Сложность:
Среднее время решения: 4 мин. 35 сек.

В треугольнике $ABC$ угол $A$ равен $26°$, угол $B$ равен $82°$, $CD$ - биссектриса внешнего угла при вершине $C$, причём точка $D$ лежит на прямой $AB$. На продолжении стороны $AC$ за точку $C$ выбрана такая точка $E$, что $CE = CB$. Найдите угол $BDE$. Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, sinA ={√{207}}/{16}$. Найдите высоту $CH$.

Площадь треугольника ABC равна 76, DE - средняя линия, параллельная стороне AB. Найдите площадь трапеции ABED.

В треугольнике $ABC$ $AC=BC$, $AH$ — высота, $AB=15$,
$\sin ∠ BAC=0{,}6$ (см. рис.). Найдите $BH$.

Найдите периметр прямоугольника, если его площадь равна $48$, а отношение соседних сторон равно $3:4$.