Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения

В равнобедренном треугольнике биссектриса, проведённая к боковой стороне, делит…

Сложность:
Среднее время решения: 3 мин. 6 сек.

В равнобедренном треугольнике биссектриса, проведённая к боковой стороне, делит её в отношении $5:8$, считая от вершины. Найдите длину основания данного треугольника, если радиус его вписанной окружности равен $2$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, tgA = 0.4$. Найдите $AC$.

Площадь параллелограммаABCD равна 324.Точка P - середина стороны BC. Найдите площадь трапеции APCD.

Стороны параллелограмма равны 20 и 15. Высота, опущенная на первую из этих сторон, равна 12. Найдите высоту, опущенную на вторую сторону параллелограмма.

В треугольнике $ABC$ $AC=BC$, $AH$ — высота, $AB=15$, $\sin ∠ BAC={√ {5}} / {3}$ (см. рис.). Найдите $BH$.