Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

В остроугольный треугольник площадью $S$ вписан другой треугольник с периметром $6$ …

Сложность:
Среднее время решения: 2 мин. 42 сек.

В остроугольный треугольник площадью $S$ вписан другой треугольник с периметром $6$ и площадью $s$, вершинами которого являются основания высот исходного треугольника. Отношение радиусов окружностей, описанной около исходного треугольника и вписанной в построенный треугольник, ${R} / {r}=3$. Найдите отношение площадей этих треугольников ${S} / {s}$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Стороны параллелограмма равны 8 и 16. Высота, опущенная на первую из этих сторон, равна 14. Найдите высоту, опущенную на вторую сторону параллелограмма.

Хорда $AB$ делит окружность на две дуги, градусные меры которых относятся как $13 : 7$. Под каким углом видна эта хорда из точки $C$, принадлежащей большей дуге окружности? Ответ дайте в…

Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?

Основания равнобедренной трапеции равны $14$ и $6$. Высота трапеции равна $7$. Найдите тангенс острого угла.