Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения

Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения: а) $x + S(x) = 2015$;…

Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:

а) $x + S(x) = 2015$;

б) $x + S(x) + S(S(x)) = 2015$;

в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Существуют ли такие восемь различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя

а) ровно в шесть раз;

б) ровно в пять раз;

в) ровно в че…

На доске написано $30$ различных натуральных чисел, каждое из которых или оканчивается на $1$, или чётное. Сумма всех чисел равна $771$. а) Может ли на доске быть выписано ровно $4$ числа,…

Последовательность натуральных чисел: $1, 3, 6, 10, 15, …$ задана формулой $a_n={1} / {2}n(n+1)$. Можно ли среди а) её членов, меньших числа $100$, выбрать семь чисел так, чтобы одно из …

а) Дана арифметическая прогрессия с целыми неотрицательными членами $a_n$. Последовательность $c_n$ сформирована по правилу $c_n = a^2_{n+7} - a_n^2$. Сколько простых членов подряд может…