Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения

При проведении школьной математической олимпиады итоговая сумма баллов составля…

При проведении школьной математической олимпиады итоговая сумма баллов составляется из двух баллов за участие, $13$ баллов за каждую взятую и решённую задачу и $(-8)$ баллов за каждую взятую и нерешённую задачу. Каждую задачу участник выбирает себе самостоятельно в запечатанном конверте. Число задач, предлагаемых для решения, не ограничено. а) У одного из участников, решившего $p$ задач и не решившего $q$ задач, итоговая сумма оказалась равной $u$ баллов. Найдите итоговую сумму участника, решившего $2p$ задач и не решившего $2q$ задач. б) Какое минимальное число задач надо взять, чтобы итоговая сумма оказалась равной нулю? в) Докажите, что если итоговая сумма у двух участников оказалась одинаковой, то разность между числом всех задач, взятых для решения одним участником, и числом задач, взятых для решения другим участником, делится на $21$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Можно ли привести пример пяти различных натуральных чисел, произведение которых равно $936$ и а) три; б) четыре; в) пять из них образуют геометрическую прогрессию?

На доске было написано $30$ натуральных чисел (не обязательно различных), каждое из которых больше $10$, но не превосходит $50$. Среднее арифметическое написанных чисел равнялось $21$. Вме…

На доске записаны числа 1, 2, 3, ..., 33. За один ход разрешается стереть произвольные три числа, сумма которых больше 66 и отлична от каждой из сумм троек чисел, стёртых на предыд…

Можно ли в бесконечно убывающей последовательности $1; {1} /{2} ; {1}/ {3} ; {1} /{4} ; {1}/ {5} ;. . .$ выбрать:

а) четыре числа;

б) сто чисел;

в) бесконечное множество чисел, котор…