Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения
Русский язык
Математика
Обществознание
Физика
История
Биология
Химия
Английский язык
Информатика
География
ОГЭ
Задача 21

Коля берёт пять различных натуральных чисел и проделывает с ними следующие операции: сначала находит среднее геометрическое первых двух чисел, затем — среднее геометрическое третье…

Задача 22

На доске написаны числа 1, 2, 3, ..., 36. За один ход разрешается стереть произвольные три числа, сумма которых меньше 40 и отлична от каждой из сумм троек чисел, стёртых на предыд…

Задача 23

На доске написаны $40$ натуральных чисел. Какие-то из них белые, а какие-то — зелёные. Белые числа кратны $9$, зелёные кратны $4$. Все белые числа отличаются друг от друга, все зелёные т…

Задача 24

Дана последовательность квадратов натуральных чисел: $1$, $4$, $9$, $16$, $25$, $36, …$ . Можно ли среди: а) первых десяти её членов выбрать шесть чисел так, чтобы одно из них равнялось сумме …

Задача 25

Два мастера на протяжении некоторого числа дней изготавливали одинаковые детали. Сергей Петрович в первый день изготовил $s$ деталей, а Пётр Сергеевич — $p$ деталей, $s$ и $p$ — натуральны…

Задача 26

На столе перед нумизматом лежит 2017 монет орлом кверху. За один ход нумизмат переворачивает любые 5 различных монет. Разрешается переворачивать в том числе и те монеты, которые уж…

Задача 27

Последовательность натуральных чисел: $1, 3, 6, 10, 15, …$ задана формулой $a_n={1} / {2}n(n+1)$. Можно ли среди а) её членов, меньших числа $100$, выбрать семь чисел так, чтобы одно из …

Задача 28

На доске выписаны числа $7$ и $8$. За один ход надо заменить написанные на доске числа $a$ и $b$ числами $(2a+3)$ и $(2+a+b)$. Например, из чисел $7$ и $8$ можно получить либо числа $(17;17)$, либо …

Задача 29

На доске записаны числа 1; 2; 3; ... ; 27. За один ход разрешается стереть произвольные три числа, сумма которых меньше 31 и отлична от каждой из сумм троек чисел, стёртых на преды…

Задача 30

На окружности в случайном порядке были расположены натуральные числа от $1$ до $13$. Над каждой парой соседних чисел написали модуль их разности, после чего исходные числа стёрли. а) М…

Задача 31

В комнате $n$ человек $(n>3)$. Каждый сказал: «В этой комнате тех, кто выше меня, меньше, чем тех, кто ниже меня». а) Пусть все они разного роста и $n=15$. Сколько человек сказали правду…

Задача 32

Можно ли привести пример пяти различных натуральных чисел, произведение которых равно $936$ и а) три; б) четыре; в) пять из них образуют геометрическую прогрессию?

Задача 33

На доске записаны числа 1, 2, 3, ..., 33. За один ход разрешается стереть произвольные три числа, сумма которых больше 66 и отлична от каждой из сумм троек чисел, стёртых на предыд…

Задача 34

На столе перед нумизматом лежит 1000 монет орлом кверху. За один ход нумизмат переворачивает любые 7 различных монет. Разрешается переворачивать в том числе и те монеты, которые уж…

Задача 35

Все члены последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 9 раз больше, либо в 9 раз меньше предыдущего. Сумма все…

Задача 36

На столе перед нумизматом лежит 2025 монет орлом кверху. За один ход нумизмат переворачивает любые 6 различных монет. Разрешается переворачивать и те монеты, которые уже были задей…

Задача 37

Имеется прямоугольная таблица размером $M×N$, заполненная числами 0 и 1, обладающая следующими свойствами. Во-первых, в каждой строке и в каждом столбце есть хотя бы один элемент, ра…

Задача 38

При проведении школьной математической олимпиады итоговая сумма баллов составляется из двух баллов за участие, $13$ баллов за каждую взятую и решённую задачу и $(-8)$ баллов за каждую …

Задача 39

На доске написано более 20, но менее 30 целых чисел. Среднее арифметическое этих чисел равно -3, среднее арифметическое всех положительных из них равно 5, а среднее арифметическое …

Задача 40

Кристина задумала трёхзначное натуральное число.

а) Может ли частное этого числа и суммы его цифр быть равным 3?

б) Может ли частное этого числа и суммы его цифр быть равным 28?

в)…

1 2 3 4 5

Твой план подготовки к ЕГЭ 2019 почти готов

Построить свой план

всего за 3 минуты