Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Найдите все неотрицательные значения $a$, при каждом из которых система уравнений…

Найдите все неотрицательные значения $a$, при каждом из которых система уравнений

$\{\table\√{(x-3)^2+y^2}+√{x^2+(y-a)^2}=√{a^2+9}; \y={|2-a^2|};$

имеет единственное решение.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каких значениях $a$ система уравнений имеет ровно два решения?

$\{\table\.{||x|-5|+|y-4|}=3; \.{|x+2|+|y+1|}=a;$

Найдите все значения $a > 0$, при каждом из которых система

$\{\table\(|x| - 3)^2 + (y - 3)^2 = 4; \(x + 3)^2 + y^2 = a^2;$

имеет единственное решение.

При каком значении $a$ множеством решений неравенства
${1+3^x} / {1+3^{-x}}>{3} / {|x+a|}$ является множество всех положительных чисел?

При каком значении $a$ множеством решений неравенства
${1+2^{-x}} / {1+2^x}>{4} / {√ {x^2+2ax+a^2}}$ является множество всех отрицательных чисел?