Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Сколько решений имеет система уравнений? $\{{\table {3x^2-4⋅3^{y+1}(x-1)=3x,}; {x^3+y+3=0.};}$ …

Сложность:
Среднее время решения: 55 сек.

Сколько решений имеет система уравнений?
$\{{\table {3x^2-4⋅3^{y+1}(x-1)=3x,}; {x^3+y+3=0.};}$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Через точку $(a, f(a))$ графика функции $f(x) = -x^2 +8x-16$ (где значение параметра $a ∈(0, 4))$ проведена касательная к графику, пересекающаяся с осями координат в точках A и B. При ка…

Найдите все значения параметра a, при каждом из которых решение неравенства ${(x - a)(a - 3√x)}/ {√{12 - x - 2a}} ≥ 0$ содержит отрезок длиной не менее $2$.

Найдите все значения параметра а, при каждом из которых уравнение $x^3 - x^2 - x log_2(a - 1) + 12 = 0$ имеет единственное решение на отрезке $[0; 3]$.

Найдите все значения параметра $p$, при каждом из которых система неравенств $\{{\table {px⩾ 5,}; {p<√ {x-1},}; {3x⩾ p+2};}$ имеет хотя бы одно решение на отрезке $[4; 5]$.