Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения
Русский язык
Математика
Обществознание
Физика
История
Биология
Химия
Английский язык
Информатика
География
ОГЭ

Точка $M$ - центр окружности, описанной около остроугольного треугольника $NPK$, $Q$ …

Точка $M$ - центр окружности, описанной около остроугольного треугольника $NPK$, $Q$ - центр вписанной в него окружности, $W$ - точка пересечения высот. Известно, что $∠PNK = ∠MPK + ∠MKP$.

а) Докажите, что точка $Q$ лежит на окружности, описанной около треугольника $PMK$.

б) Найдите угол $MQW$, если $∠NPK = 47°$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Две окружности касаются внутренним образом в точке $A$, причём меньшая окружность проходит через центр $O$ большей. Диаметр $BC$ большей окружности вторично пересекает меньшую окружность…

В треугольнике $ABC$ проведена высота $AH$ и медиана $AM$. $AB=2$,
$AC=√ {21}$, $AM=2{,}5$. а) Докажите, что треугольник $ABC$ прямоугольный. б) Вычислите $HM$.

В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …

Две окружности различных радиусов касаются друг друга внешним образом. Их общие касательные, не проходящие через точку касания окружностей, пересекаются в точке O. При этом одна из…