Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения

В трапеции ABCD точка M - середина основания AD, точка N выбрана на стороне AB …

В трапеции ABCD точка M - середина основания AD, точка N выбрана на стороне AB так, что площадь четырёхугольника ANLM равна площади треугольника CLD, где L - точка пересечения отрезков CM и DN.

а) Докажите, что N - середина стороны AB.

б) Найдите, какую часть от площади трапеции ABCD составляет площадь четырёхугольника ANLM, если BC = 5, AD = 8.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Окружность, вписанная в остроугольный треугольник ABC, касается сторон AB и AC в точках E и F.

а) Докажите, что центр окружности, вписанной в треугольник AEF, лежит на окружности, …

В прямоугольнике ABCD AB = 16, AD = 22. К окружности, радиус которой равен 8, с центром в точке A из точки C проведена касательная, которая пересекает сторону AD в точке M.

а) Дока…

Точка $P$ - центр окружности, описанной около остроугольного треугольника $MNQ, K$ - центр вписанной в него окружности, $O$ - точка пересечения высот. Известно, что $∠NMQ = ∠PNQ + ∠PQN$.

а…

В треугольнике $ABC$ проведена высота $AH$ и медиана $AM$. $AB=2$,
$AC=√ {21}$, $AM=2{,}5$. а) Докажите, что треугольник $ABC$ прямоугольный. б) Вычислите $HM$.