Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения

Две окружности касаются внешним образом в точке $P$. Прямая $MN$ касается первой ок…

Две окружности касаются внешним образом в точке $P$. Прямая $MN$ касается первой окружности в точке $M$, а второй - в точке $N$.

а) Докажите, что $△MNP$ прямоугольный.

б) Найдите площадь $△MNP$, если известно, что радиусы окружностей равны 4 и 16.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $MNP$ проведены медианы $MM_1$ и $NN_1$. На сторонах $MN, MP$ и $NP$ взяты соответственно точки $F, K$ и $E$, причём $FE ‖ MM_1, FK ‖ NN_1$ и $MF : MN = 1 : 3$.

а) Докажите, что $MK = {1}/{6}MP, NE = {1}/{3}PN$.…

В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …

Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $E$ и $F$.

а) Докажите что центр окружности, вписанной в треугольник $BEF$, лежит на окружности, в…

В треугольнике $ABC$ проведена высота $AH$ и медиана $AM$. $AB=2$,
$AC=√ {21}$, $AM=2{,}5$. а) Докажите, что треугольник $ABC$ прямоугольный. б) Вычислите $HM$.