Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения

В трапеции ABCD точка M - середина основания AD, точка N выбрана на стороне AB …

В трапеции ABCD точка M - середина основания AD, точка N выбрана на стороне AB так, что площадь четырёхугольника ANLM равна площади треугольника CLD, где L - точка пересечения отрезков CM и DN.

а) Докажите, что N - середина стороны AB.

б) Найдите, какую часть от площади трапеции ABCD составляет площадь четырёхугольника ANLM, если BC = 4, AD = 6.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В прямоугольнике ABCD AB = 24, AD = 23. К окружности, радиус которой равен 12, с центром в точке A из точки C проведена касательная, которая пересекает сторону AD в точкеM.

а) Дока…

В треугольнике $ABC$ проведена высота $AH$ и медиана $AM$. $AB=2$,
$AC=√ {21}$, $AM=2{,}5$. а) Докажите, что треугольник $ABC$ прямоугольный. б) Вычислите $HM$.

Две окружности различных радиусов касаются друг друга внешним образом. Их общие касательные, не проходящие через точку касания окружностей, пересекаются в точке O. При этом одна из…

В прямоугольнике ABCD AB = 16, AD = 22. К окружности, радиус которой равен 8, с центром в точке A из точки C проведена касательная, которая пересекает сторону AD в точке M.

а) Дока…