Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения
Русский язык
Математика
Обществознание
Физика
История
Биология
Химия
Английский язык
Информатика
География
ОГЭ

Найдите наибольшее значение функции $y = ln (x + 7)^9-9x$ на отрезке $[-6.5; 0]$.

Сложность:
Среднее время решения: 50 сек.

Найдите наибольшее значение функции $y = ln (x + 7)^9-9x$ на отрезке $[-6.5; 0]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите точку максимума функции $y=√ {77+4x-x^2}$.

Найдите точку минимума функции $y = -{x^2 + 10 000}/{x}$.

Найдите точку максимума функции $y=-8√ x+12\ln(x-4)-11$.

Найдите точку максимума функции $y = √{102 + 16x - x^2}$.