Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения

Найдите наибольшее значение функции $y=\log_2^2{x}-4\log_2{x}+3$ на отрезке $[{1} / {2};2]$.…

Сложность:
Среднее время решения: 3 мин. 56 сек.

Найдите наибольшее значение функции $y=\log_2^2{x}-4\log_2{x}+3$ на отрезке $[{1} / {2};2]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите точку минимума функции $y = (x - 1)^2(x + 8) + 15$.

Найдите наибольшее значение функции $y = (51 - x)e^{x-50}$ на отрезке $[42; 70]$.

Найдите точку максимума функции $y = √{102 + 16x - x^2}$.

Найдите точку минимума функции $y = -{x^2 + 10 000}/{x}$.