Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Найдите наибольшее значение функции $y=\log_2^2{x}-4\log_2{x}+3$ на отрезке $[{1} / {2};2]$.…

Сложность:
Среднее время решения: 4 мин. 0 сек.

Найдите наибольшее значение функции $y=\log_2^2{x}-4\log_2{x}+3$ на отрезке $[{1} / {2};2]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите точку максимума функции $y = √{102 + 16x - x^2}$.

Найдите точку минимума функции $y = -{x^2 + 10 000}/{x}$.

Найдите точки минимума функции $y = √{x^2 + 60x + 1000}$.

Найдите наибольшее значение функции $y = 18 cos x + 9√3x - 3√3π + 16$ на отрезке $[0;{π}/{2}]$.